Voltage-Sensitive K+ Channels Inhibit Parasympathetic Ganglion Transmission and Vagal Control of Heart Rate in Hypertensive Rats

نویسنده

  • Torill Berg
چکیده

Parasympathetic withdrawal plays an important role in the autonomic dysfunctions in hypertension. Since hyperpolarizing, voltage-sensitive K(+) channels (K V) hamper transmitter release, elevated K V-activity may explain the disturbed vagal control of heart rate (HR) in hypertension. Here, the K V inhibitor 3,4-diaminopyridine was used to demonstrate the impact of K V on autonomic HR control. Cardiac output and HR were recorded by a flow probe on the ascending aorta in anesthetized, normotensive (WKY), and spontaneously hypertensive rats (SHR), and blood pressure by a femoral artery catheter. 3,4-diaminopyridine induced an initial bradycardia, which was greater in SHR than in WKY, followed by sustained tachycardia in both strains. The initial bradycardia was eliminated by acetylcholine synthesis inhibitor (hemicholinium-3) and nicotinic receptor antagonist/ganglion blocker (hexamethonium), and reversed to tachycardia by muscarinic receptor (mAchR) antagonist (atropine). The latter was abolished by sympatho-inhibition (reserpine). Reserpine also eliminated the late, 3,4-diaminopyridine-induced tachycardia in WKY, but induced a sustained atropine-sensitive bradycardia in SHR. Inhibition of the parasympathetic component with hemicholinium-3, hexamethonium, or atropine enhanced the late tachycardia in SHR, whereas hexamethonium reduced the tachycardia in WKY. In conclusion, 3,4-diaminopyridine-induced acetylcholine release, and thus enhanced parasympathetic ganglion transmission, with subsequent mAchR activation and bradycardia. 3,4-diaminopyridine also activated tachycardia, initially by enhancing sympathetic ganglion transmission, subsequently by activation of norepinephrine release from sympathetic nerve terminals. The 3,4-diaminopyridine-induced parasympathetic activation was stronger and more sustained in SHR, demonstrating an enhanced inhibitory control of K V on parasympathetic ganglion transmission. This enhanced K V activity may explain the dysfunctional vagal HR control in SHR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Parasympathetic and Sympathetic Activation Reveals Altered Autonomic Control of Heart Rate, Vascular Tension, and Epinephrine Release in Anesthetized Hypertensive Rats

Sympathetic hyperactivity and parasympathetic insufficiency characterize blood pressure (BP) control in genetic hypertension. This shift is difficult to investigate in anesthetized rats. Here we present a pharmacological approach to simultaneously provoke sympathetic and parasympathetic transmitter release, and identify their respective roles in the concomitant cardiovascular response. To stimu...

متن کامل

M-currents (Kv7.2-7.3/KCNQ2-KCNQ3) Are Responsible for Dysfunctional Autonomic Control in Hypertensive Rats

Autonomic dysfunctions play important roles in hypertension, heart failure and arrhythmia, often with a detrimental and fatal effect. The present study analyzed if these dysfunctions involved M-channels (members of the Kv7/KNCQ family) in spontaneously hypertensive rats (SHR). Cardiac output and heart rate (HR) were recorded by a flow probe on the ascending aorta in anesthetized SHR and normote...

متن کامل

Substance P preferentially inhibits large conductance nicotinic ACh receptor channels in rat intracardiac ganglion neurons.

The effects of substance P (SP) on nicotinic acetylcholine (ACh)-evoked currents were investigated in parasympathetic neurons dissociated from neonatal rat intracardiac ganglia using standard whole cell, perforated patch, and outside-out recording configurations of the patch-clamp technique. Focal application of SP onto the soma reversibly decreased the peak amplitude of the ACh-evoked current ...

متن کامل

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate.

Intracardiac pathways mediating the parasympathetic control of various cardiac functions are incompletely understood. Several intracardiac ganglia have been demonstrated to potently influence cardiac rate [the sinoatrial (SA) ganglion], atrioventricular (AV) conduction (the AV ganglion), or left ventricular contractility (the cranioventricular ganglion). However, there are numerous ganglia foun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in neurology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015